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COMBINING DATA FOR IMPROVED WEIBULL

PARAMETER ESTIMATION

by
* **S.B. Batdorf and G. Sines

School of Engineering and App l ied Science, UCLA

ABSTRACT

Weibull parameters are often used by experimentalists to

characterize the fracture behavior of structural materials. Frequently

several different types of tests are performed , and theory indicates

that the parameters for each type should be the same, or have some

specifi c relation to each other. In such cases, it is advantageous to

combine the data to find the parameters best representing all the data.

The present paper discusses techniques for carrying out this objective

and analyzes two examples in detail to illustrate the principles involved .

The first example compares uniaxial and equlbiaxial fracture statistics.

The second example discusses fracture statistics for single fibers of

several different l engths.

* Adjunct Professor, Materials Department.
** Professor, Materials Department and Structures & Mechanics Department.
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INTRODUCTION

According to weakest link theory, the probability of failure

Pf of a specimen of volume V uniformly loaded In simple tension a

must take the form

= 1 — exp[—V f(a)] (1)

The functional form of f(a) depends on the particular weakest link

theory under consideration. Weibul l (Ref. 1,2) not only derived

Eq. (1), but pointed out that f(o) has a simple physical significance;

It is the number of flaws per unit volume having a strength equal to

or less than a. For this reason, he used the symbol n(a). In

additi on, he introduced a simple parametri c representation of n(a),

n(a) 
2(

~~~~
0

~~.~
) =  k(o_ a u ) m (2)

(
~

)

Eq. (2) is a special case of Eq. (3) in which Is taken to be 0.

These equations have been widely used , and experimentalists often

present their results In terms of the Weibull parameters representing

the best fit, rather than giving the origina l data.

L. . .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _  _  _ _



Weibull ’s theory for polyaxial stress states is based on the

implicit assumption that only the component of stress normal to the

crack plane contributes to its fracture (Ref. 9). Recently, it has

been shown (Ref. l~ that fracture statistics based on more realisti c

fracture criteria also imply the Eq. (17-18) relationship, but wi th

a factor F which depends upon the fracture criterion employed . Since

the proper fracture cri terion for mixed loading conditions is not set-

tled yet,we trea t F as an unknown parame ter.
In an experiment designed to evalute F for equal or biaxial

tension (Ref.i1) 10 bars of high strength alumina were fractured in

4—point bending and ten discs were fractured employing concentri c

ring loading . The volumes and areas in the test sections of the two

types of specimens were the same and the correction factor relating

uniform tension and pure bending are the same for the uniaxia l  and

equibiaxial case (Ref.12). Thus the maximum stress values at fracture

can be used to obtain the best values of Weibu ll ’s parameters and the

factor F.

The test dat are aiven in Table 1. The same data are disnl~veul

as a Weibull plot In Fig. 1 , where the coordinates are defined by

Eq. (6a,b). with the assumption that a
~ 

= 0. The values of m as obtained

from linear regression analyses of the two sets of data were 14.06 for

the uniaxial case and 14.54 for the equibiaxial case. According to theory,
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the two lines shoul d be parallel and sepa rated verticall y by a distance

equal to Ln F. Note that finding a single val ue for m is not only desirable

for greater accuracy, but essential to the determination of F.

Employing the relations shown in Eq. (6), Eqs. (13) and (14)

were applied to the data in Table 1 wi th the following results:

m = 14.296

b = —53.585
a

b8 
= -52.376

The verti cal separation of the two lines is

b8 - b = l . 2 O 9 = efl F (19)

whence

F = 3.35

Reference 7 shows that according to Weibu ll’ s theory, F should be approxi-

mately 6.6. Inclusion of shear in the fracture cri teri on leads to l ower

values of F and improved agreement wi th experiment (Ref. 6).

To convert b into a Weibull parameter , we note that If the

probability of survival in simple tension is given by Eq. (17), the

probability of survival of a rectangular bar in pure bending is(Ref. 1 ,9)

exp [- 2(m+l) am] (20)

_ _ _  3
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We note also that the y-intercept is the value of £n .tn P5~ when

x tna Oor a l. Thus

b = ~tn[~(~+l)] (21a)

or

k 
2(m+l) ex p [b ] (2lb)

Using the previously determined values of m and ba~ 
and V = 0.442 in 3,

we obtain k = 3.70 x lO
_22 as the va lue of the secon d We ib ul l parame ter

when the vo l ume and stress are ex p resse d in cu bi c inc hes and ks i

respectively.

Example 2 — Single Fiber Testin.~

A number of experiments have been carried out to determine the

statistics of fracture of single fibers and the dependence of the

statistics on fiber length . According to Weibull ’s two parameter repre-

sentati on,

P5(a) 
= exp(-L k 0m] (22)

_ _  .~~~~~~~~~~ -.



-. 
~

- .-—- 

~~T~~~~~~ - - : ~

10

From the preceding discussion , we would expect that Weibull plots

of such data would result in different straight lines for different

leng ths , but that the line for L8 could be obtained from the line
for La simply by a vertical shift equal to tn (L6/La)~ The actual

behavior usually differs somewhat from this due to real world consi-

dera ti ons.
First of all , the stressed length of fiber is necessarily

larger than the nominal test section. In the case of high modulus

fibers, the stress in the fibers extends somewhat into the region of

the test fixture due to shear lag effects. Consequently, unless
precautions are taken to exclude all test data correspondi ng to failure

outside the test section, an effective length ~ must be added to each

fiber length (Ref. 13,14 ). This results in a vertical separation equal

to ~tfl{(L3
+~)/(L +~)]. In addi tion , at a sufficiently large tensile

stress , the fiber begins to tear loose from the support structure,

greatly complicating the stress analysis and the interpretation of the

fracture data.

One of the most recent and extensive tests on single fiber

strength was conducted by Barr, Chwastiak and Didchenko (Ref. 15).

These authors have kin~dly made the original data available to the present

writers. An examination of the data for their high strength carbon

fibers suggests that the process of tearing away from the support

1 
_ _  

_ _

_ _  _ _
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structure began about a = 2.7 GPa. Accordingly, the analysis undertaken

in the present paper is limi ted to stress levels below this. The fracture

data for length L = 1.4 mm , 3.2 mm , 10 mm , 20 mm, and 40 mm are contained

in Table 2. In the cases of 3.2, 20 and 40 mm , the data were too numerous

to permit easy plotting so they were reduced by including only every other

failure .

Applying Eqs. (13) and (14) to these data , we obtained the results

in Teble 3. In this Table are listed the various sums appearing in

Eq. (13), the m values that would be obtained for each length considered

indivi dually , and the consolidated m value given by Eq. (13). Also shown

are the i ntercepts obtained using Eq. (14). Fig. 2 display s on a Weibul l

plot the experimental data , the centroids ,and the best straight lines

constrained to have a common slope . The dotted lines through the centroids

indi cate the resul ts obtained when a linear regression analysis is made

for each length considered indivi dually.

As might be expected , the vertical separation of the lines Is

less than that given by simple theory, indi cating the presence of an

effective length i~ (Table 4). This must be taken into account as we

turn to the task of findi ng the value of Weibull ’s second parame ter , k.

To do this , we need to develop some additional theory. Since

the value baø just obtained for the a data y-lntercept has not been

required to satisfy the theoretical separation , we look for a value

L . . . .~~~~~~~~~~~~~~~~~~~ -_-- 
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b = b  + s (23)
a aO

which does satisfy this relation. Then, all the intercepts can be

expressed simply:

b = b  + s + 6  (24)
V aO V

where

= Zn( (L~ + ~)/(L + ~)) (25)

Thus

y m x  + b  m x  + b  + 6 +s (26)
V V V V aO V

Equation (26) is the most general expression for straight—line

representations of the Weibu ll plots of the data which satisfy the

vertical separation requirement. So we now seek to minimize the mean

square discrepancy between the data and the theory. That is , we desire

to minimize J(s,~) by proper choice of s and i~, where

J(s ,~) = 

~ 
— m — b )

2 (2 7)

Minimization of 3 with respect of s can be accomplished

analytically by setting aJ/~s = 0. First we rewrite Eq. (27) in the form
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= 

~~ [fr~i 
- m x 1 

- b
~o) 

+ (b - b 0)]2 (28)

When the binomial between the rectangular brackets in Eq. (28) is squared ,

we obtain three terms. The first term does not contain s, and is simply

equal to the I of Eq. (10). The cross-term vanishes by virtue of Eq. (12).

As a result

aJ .3K ...0 (29)as as

where

K = z(b~ 
- b 0)

2 
(30)

Carrying out the indicated operation and making use of Eq. (24), we obtain

zn (b — b  \ = z n ( b  + 6 - b  + s \ = O  (31)V~~ V VO / V V
~~

aO V vO /

The value of s satisfying this equati on is s = s~ where

Z n / b - 6
* 

V~~~VO V

s = _baO + E 
~~V 

( 32)

and the minimum value of K wi th respect to $ is

K = ~~ n (b + 6 — b  + s \  C )
V V~~~aO V VO / 

~~~~.
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Since 6V is a function of the effective length A , S and therefore

K are also func tions of ~. If we have some independent means of knowing

what ~ should be, this value should be Inserted, together with s , into

Eq. (24) to determine b .  If not, ~ can be inferred from the data by

minimizing K with respect to ~. This can be done graphical ly by calcu-

la ting K for a ser ies of va lues of A , and taking that value of A for

which K is a minimum. The latter procedure was employed in the present

paper.

Several values were selected for A in the neighborhood of 1 m.

For each value of A , 6 was calculated using Eq. (25), s~ was obtained

using Eq. (32), and K was evaluated using Eq. (33). In Fig. 3, K is

plotted against A. The minimum occurs when A = = 1.02 nm . The

corresponding value of is 0.0105. The y-intercepts bV were then found

using Eq. (24). The results are listed In Table 1.5 , and shown in Fig. 2

as i nverted triangles on the y axis.

The Weibull parameter k can be obtained using any one pf the data

sets as follows . From Eq.

bV 
= tnEk(LV + ~)) (34a)

or 

k exp(bV )/(LV + • exp(b~ + s*)/(L + (34b) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The above equation yields k = 3.08 x 10~ when lengths are expressed

In millimeters and stresses are in GPa.

DISC USSION

Combining data sets to obtain improved estimates of the Weibu l l

parameters invol ves a combination of standard (though possibly not widely

known) statistical procedures and weakest link theory. The latter is to

some degree in a state of flux and sometimes more than one approach is

possible. Successful application of the technique therefore involves

tailoring the approach to the specifi c situati on with due consideration

for applicable theory. For example , in Example 1 , the vertical separation

between the two lines in a Weibull plot is not uniquely specified by

theory, so we determined it by experiment. On the other hand , i n Examp le 2 ,
theory does give the vertical separations , subject however to an uncer-

tainty resulting from the i nfluence of an unknown effective length A, which

has to be determined experimentally. In Example 2, we employed Weibull’ s

two-parameter representation because there was no evidence of curvature

in the Welbull plots . If there had been, It would have been advantageous

to employ his three-parameter representation. Choosing a
~ 

to minimi ze

the least square discrepancy between theory and experiment could be

accomplished graphi cally, as ~as done in the determination of ~.
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In the case of Example 1 , the value found for m based on the use

of all the data was essential ly the mean of the values of m determined

for uniaxial and biaxial data treated separately. Since the number of

test points was the same for both cases, one might be led to suspect that

m is an average of ma~ inB~ etc. weighted in some manner to reflect the

numbers of da ta points, n ,  n~, etc. That such is not the case can be

demonstrated as follows.

It will be recalled that the slope of the v data in a Weibull

plot is given by

m = 

~~~~ (15)

when only those data are cons idered, whereas when all the data are

considered the ~onmno n slope is

m = E p ~/ E q ~ (16)

Dividing both the numerator and denominator of the latter equation by

we obtain

m 
[~~

q6•.. 
+ q~~6 ... + Q (35)

where

n q
(36)

“ E q
V

I 
_ _ _ _ _ _ _ _ _  _ _ _ _
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Thus the ratio of the weighting factor for mV to that for ma Is

Since from (15)

q z x y - E x ty/n

it is clear that the weighting factors are not determined solely by

the numbers nV ; other statistical properties of the data are also

Invol ved.

Whether an unfamiliar procedure will be adopted depends largely

on the cost /benefit tradeoff , so a few words on this subject are in

order. In the case of Gaussian distributions , the fractional uncertain-

ties in mean and standard deviation are approxima tely equal to N~
0 5

where N is the number of observations. Wei bull distributions can be

regarded as skewed Gaussian distributions , so the same rul e is roughly

applicable. This means that greater accuracy shoul d result from pooling

the data. In the case of Example 1 , the slopes found for the Individual

sets of data differed by only about 3% whi ch Is far less than the

uncertainty in the fina l result, and made It necessary for the purposes

of our illustration to use more significant figures than are warranted

by the data. It could be argued that a different example would be

preferable. However , the authors chose In both examples to use real
data readily available to them, since the sole purpose was to demonstrate

a least squares approach to combining data .

_ 

_ _  

‘

- j

______ ---...------ .---~-----— - --_ -.------
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Also it should be noted that, as Robinson has pointed out

(Ref. 6 ) when = 0, there is a simpler method of pool ing the

data. This is to reduce the stresses in different data sets to

a common basis, as for instance, by normalizing to the average or

the median stress , and then using least squares to determine m.

This is equivalent to using a single point fit for determining

the intercept bV Instead of a least squares fit. Obviously, this

is less precise than the least squares approach for obtaining both

m and b described here, and will not in general lead to the same

result. However, in many cases, the differences will be far less
_ O .5than the statistical uncertainty N mentioned earlier.

Wi th regard to how much work is invol ved in processing data

In the manner suggested here, this depends of course on both the

hardware and software employed. The present authors used a card

programmable hand-held computer wi th a memory capacity sufficient

to store all fracture data and a built -In statistical subroutine

giving the sums appearing in Eq. (15). WIth such equipment, the time

needed to obtain the results used in Example 1 is of the order of 10

minutes and for Example 2 an hour or two. The time for thinking through

the program the first time must be added to this, something on the order

of an hour should suffice for prograninIng. The authors feel that, in

most cases with which they are familiar , the improvement in the results of

the data reduction obtained following procedures such as those reconi—

mended herein greatly outweigh the costs In additional effort.

.

~~~~~~~~~

,

.~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TABLE 1

Plate Failure Stresses (ksi)

j Uniaxial Biaxial

1 36.696 34.728

2 38.212 34.874

3 38.401 35.153

4 40.203 37.103

5 41 .060 37.673

6 41.498 37.879

7 41.595 38.072

8 43.371 38.826

9 43.632 41 .320

10 46.196 41 .815

- 
rn

~~~~~~~
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TABLE 2

Fiber Fa i lur e Stresses (GPa)

L(mm) 1.4(a) 3.2(e) 10(y) 20(6) 40(c)

j  N 39 57 33 30 19

1 1.67 0.965 1.24 0.651 0.887

2 1.91 1.19 1.72 0.891 1.01

3 2.53 1.66 1.75 1.14 1.22

4 2.69 1.74 1.82 1.29 1.31

5 2.16 1.84 1.47 1.40

6 2.32 1.91 1.63 1.51

7 2.36 1.94 1.76 1.57

8 2.39 1.96 1.83 1.91

9 2.45 2.19 1.90 1.95

10 2.47 2.23 1.91 2.12

11 2.65 2.46 2.05 2.20

12 2.49 2.09 2.35

13 2.54 2.22 2.40

14 2.54 2.30 2.56

15 2.59 2.36 2.62

16 2.63 2.47

17 2.69 2.61

—.—_ —.-—-—

~ 

-- -.~~~~~~~~~~— -—- . .--- .rn 
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TABLE 3

Fiber Calculati ons

Data Subset a 8 6 c

Ey -11.4484 -26.5591 -23.7647 -21.8706 -12.9607

£y2 33.9114 70.1282 45.7751 41.0337 23.8137

n 4 11 17 17 15

3.0777 7.l9~i 12.6754 8.9811 8.0464

~x
2 2.5225 5.7603 10.1454 7.0459 5.9723

Exy -8.4025 -14.9389 -14.8523 -6.1364 -2.4306

m 2.6289 2.2986 4.1287 2.3543 2.7308
V

m(consolidated) = 2.6681

b -4.9149 -4.1592 -3.3873 -2.6961 -2.2953vO

TABLE 4

Vertical Separation

~~~~~~ 
_ C

Exper imental ( b
~o 

- ba0) 0 0.7557 1.5276 2.2188 2.6196

L
Theoreti cal (Ln .

~~
. ) 0 0.8267 1.9661 2.6593 3.3524

TABLE 5

~ tlmum y-intercepts

_ C

b -4.9044 -4.3483 -3.3885 -2.7427 -2.0741
V

. .~~~ . . .  .— —.-~~—~~,- ,. .. . - .. .-. . ,.- .- .  - . :_~.~_~ __.. .~~
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